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ABSTRACT

Recent studies proposed leading averaged coupled covariance (LACC) as an effective strongly coupled

data assimilation (SCDA) method to improve the coupled state estimation over weakly coupled data as-

similation (WCDA) in a coupled general circulationmodel (CGCM). This SCDAmethod, however, has been

previously evaluated only in the perfect model scenario. Here, as a further step toward evaluating LACC for

real world data assimilation, LACC is evaluated for the assimilation of reanalysis data in a CGCM. Several

criteria are used to evaluate LACC against the benchmarkWCDA. It is shown that despite significant model

bias, LACC can improve the coupled state estimation over WCDA. Compared to WCDA, LACC increases

the globally averaged anomaly correlation coefficients (ACCs) of sea surface temperature (SST) by 0.036 and

atmosphere temperature at the bottom level (Ts) by 0.058. However, there also exist regions where WCDA

outperforms LACC. Although the reduction in the anomaly root-mean-square error (RMSE) is not as

consistently clear as the increase in ACC, LACC can largely correct the biased model climatology.

1. Introduction

Coupled data assimilation (CDA) is considered an

effective initialization approach for coupled Earth sys-

tem models (Zhang et al. 2007; Sugiura et al. 2008; Saha

et al. 2010; Dee et al. 2011). CDA assimilates observa-

tions into one or more model components and allows

the exchange of information between different model

components dynamically and statistically. Therefore, it

is expected to produce more self-consistent state esti-

mation for coupled models (Zhang et al. 2005, 2007;

Sugiura et al. 2008). Generally, CDA can be classifiedCorresponding author: Jingzhe Sun, sunjingzhe13@nudt.edu.cn
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into two categories (Han et al. 2013; Liu et al. 2013):

weakly coupled DA (WCDA) and strongly coupled DA

(SCDA). In WCDA, assimilation is applied indepen-

dently to each model component in the coupled model,

and the coupling between different components is ac-

complished only dynamically through cross-component

fluxes during the forecast stage. In SCDA, assimilation is

simultaneously applied to the fully coupled system, such

that the coupled system is treated as a single integrated

system. Thus, observations in one model component can

be used to update othermodel components via the cross-

component error covariance (hereafter coupled covari-

ance). As a result, the interactions between different

model components are accomplished not only dynami-

cally via cross-component fluxes during the forecast

stage but also statistically through the coupled covari-

ance during the analysis phase.

SCDA is, in principle, a better CDA method than

WCDA because the former makes full use of the ob-

servations and the coupled model to provide the more

consistent and balanced initial conditions for coupled

Earth systemmodels. In practice, however, despite some

progress in the development of SCDA in recent years

(Liu et al. 2013; Lu et al. 2015b; Frolov et al. 2016; Sluka

et al. 2016; Smith et al. 2017, 2018), many scientific and

technical challenges remain to be solved before the

SCDA system becomes operational (Penny et al. 2017;

Penny and Hamill 2017). Sampling error is a serious

problem for ensemble-based SCDA implementation

in a complexmodel such as a coupled general circulation

model (CGCM) because of the limited ensemble size

(usually dozens at most) constrained by computation

resources. Therefore, a simple application of the cou-

pled covariance may introduce more noise than the

signal, deteriorating SCDA relative to the correspond-

ing WCDA (e.g., Han et al. 2013; Lu et al. 2015a,b).

Recently, we proposed the SCDA scheme called leading

averaged coupled covariance (LACC) in which the

signal-to-noise ratio is increased by using the atmo-

spheric observations of the lead times in time averaging

(Lu et al. 2015a, hereafter Part I). It has been shown that

LACC can lead to significant improvements in the

analysis over WCDA in a CGCM using a small ensem-

ble size (Lu et al. 2015b, hereafter Part II). However,

LACC has been tested only in the perfect model sce-

nario in a CGCM. In the real world scenario, model

bias becomes one main issue and may provide a signif-

icant challenge for the successful implementation of the

SCDA scheme. It therefore remains unclear whether

LACC can improve the analysis in the presence of sig-

nificant model bias. In a simple model, Part I showed

that LACC can indeed improve the state estimation

relative to WCDA in a biased model framework. This

result suggests that LACC can possibly improve the

state estimation despite model bias. This implication is

confirmed in this study.

As an extension of Part I and Part II, this study ad-

dresses the impact of model bias on LACC in a CGCM.

As a further step toward the real world scenario, we

evaluate LACC using reanalysis data as observations.

To the best of our knowledge, this is the first application

of a SCDA system assimilating real world reanalysis

data in a CGCM. Our study shows that, relative to

WCDA, LACC can indeed improve the anomaly cor-

relation coefficient (ACC) of the coupled state in both

the ocean and atmosphere. Although model bias com-

plicates the evaluation in terms of the root-mean-square

error (RMSE), LACC improves the anomaly RMSE

over significant areas while correcting the biased

model climatology. This paper is organized as follows.

Section 2 describes the CGCM, our SCDA system,

and the LACC method. The experiments and results

are reported in section 3. More specifically, section 3a

shows the benchmark WCDA experiment, sections 3b–3e

show the results of four comparison schemes, section 3f

shows the sensitivity experiments of the LACC method,

and section 3g shows the correction effect of LACC to the

biased model climatology. Section 4 discusses the results

and summarizes the paper.

2. Model and methods

The Fast Ocean Atmosphere Model (FOAM, version

1.5) is a fully coupled general circulation model (Jacob

1997; Jacob et al. 2001). The atmosphere component is a

spectral model with an R15 horizontal resolution and an

18-level hybrid vertical coordinate. The ocean compo-

nent has a 2.88 3 1.48 horizontal resolution and a 24-level
z coordinate. The land and sea ice components are based

on those of Community Climate Model 2 and CSM Sea

IceModel 2, respectively. FOAM is able to capturemost

major features of the observed global climatology and

climate variability as in some more advanced CGCMs

(e.g., Liu et al. 2004, 2007a,b).

The SCDA system in FOAM is based on the ensemble

adjustment Kalman filter (EAKF; Anderson 2001, 2003;

Zhang et al. 2007), a variant of the ensemble Kalman filter

(EnKF; Evensen 1994). It consists of the atmosphere DA

(ADA), ocean DA (ODA), and a cross-domain update

(hereafter cross update) from the atmosphere to the ocean.

Given that the essence of LACC is to take advantage of

the increased cross-domain correlations between the

atmosphere of the lead times and the current state of the

ocean, only the atmosphere-to-ocean cross update is

considered in this study. Considering that the obser-

vations are more numerous in the atmosphere than in
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the ocean, the atmosphere-to-ocean cross update is

likely to play a more important role in practice than

the ocean-to-atmosphere update. Both localization

(Houtekamer and Mitchell 1998) and covariance in-

flation (Zhang et al. 2004) are included in the system.

The flexibility of this DA system provides us with a

SCDA system when all three DA components are

activated and a WCDA system when the cross update

is shut off.

The cross update in FOAM is based on the LACC

approach, which takes advantage of the enhanced

coupled covariance between the leading averaged

atmosphere and the current state of the ocean. In the

EnKF-based cross update of LACC, the ensemble

ocean analysis at time t, xaocn(t), can be represented as

follows:

xaocn(t)5 xfocn(t)1K3 [xoatm(t2, t1)2 x
f
atm(t2, t1)]

xoatm(t2, t1)5 xobsatm(t2, t1)1N(0,s
atm

/
ffiffiffi

t
p

)

K5
covhxfocn(t), xf

atm(t2, t1)i
varhxf

atm(t2, t1)i1s2
atm/t

,

where xfocn(t) is the ensemble ocean forecast at time t,

xobsatm(t2, t1) is the leading averaged atmosphere obser-

vation between t2 and t1 (t2 # t1 # t) with error satm,

xoatm(t2, t1) is the leading averaged ensemble atmo-

sphere observation, x
f
atm(t2, t1) is the corresponding

ensemble atmosphere forecast, and K is the Kalman

gain. Here we note that the error of the time-averaged

observation xobsatm(t2, t1) is reduced to satm/
ffiffiffi

t
p

, where t is

the number of observations between t2 and t1. More

details of the LACC method can be found in Part I.

More specifically in this study, observations of atmo-

sphere temperature in the bottom four levels are used to

directly adjust the sea surface temperature (SST) during

the analysis phase. Here, the use of the observations in

the bottom four levels is consistent with the choice in

Part II. This usage indicates the trade-off between the

fact that the cross correlations of the atmospheric col-

umn with SST decrease rapidly with altitude and the

desire to use as many observations as possible in the

cross update. Compared with the straightforward si-

multaneous coupled covariance (SimCC) method (Han

et al. 2013; Liu et al. 2013), LACC can significantly in-

crease the cross correlation between the atmosphere

and ocean and therefore enhance the signal-to-noise

ratio during assimilation.

For simplicity here, reanalysis data instead of raw

observational data are used as observations for assimi-

lation. The reanalysis data are first interpolated onto

the FOAM grids before assimilation. Furthermore, our

LACC is mainly compared with the corresponding

WCDA. Since the reanalysis data are used in both cases,

it provides a fair comparison. The assimilated reanalysis

datasets include the daily mean air temperature and

wind components from the NCEP–NCAR Reanalysis I

(Kalnay et al. 1996) and the monthly mean SST from

the NOAA Extended Reconstructed Sea Surface

Temperature (ERSST) version 5 (Huang et al. 2017).

The observational uncertainties used in this study are

1K for monthly mean SST and daily mean atmosphere

temperature and 1ms21 for daily mean wind compo-

nents, similar to previous studies (Zhang et al. 2007; Liu

et al. 2014; Lu et al. 2017a,b). Experiments with different

levels of uncertainties show that our conclusions are

robust. For the verification of the atmosphere analysis,

theNCEP–DOEReanalysis II (Kanamitsu et al. 2002) is

used. Reanalysis II is recognized as an improved version

of Reanalysis I and thus can be used as a better ap-

proximation to the real world than the previous version.

To provide independent reference data for the ocean,

the EN4.2.1 quality-controlled ocean temperature and

salinity analysis from the Met Office Hadley Centre

(Good et al. 2013) as well as the SODA3.4.2 reanalysis

from theUniversity of Maryland (Carton et al. 2018) are

used for validation. EN4.2.1 is a statistical objective

analysis without model influence, while SODA3.4.2 is

one of the latest reanalyses available. Together these

two data sources can serve as reasonable references. All

data are interpolated onto the FOAM grids before

comparison.

Both ACC and RMSE are used for assessing the

analysis. ACC and RMSE, with different emphases, are

two of the most widely used statistical measures in the

verification and evaluation of experimental results. In

climate system analyses, more attention is usually paid

to the anomaly than to the climatology. ACC is the

correlation between anomalies of the modeled data and

the verifying data. A higher ACC implies a higher sim-

ilarity of evolving variability between two time series of

anomalies. RMSE is the standard deviation of the pre-

diction errors, which measures how much the simulated

data differ from the reference data. A CGCM, as in our

case, inevitably has bias. Given the model bias from the

real world, the full-value RMSE is further divided into

the anomaly RMSE and the climatology RMSE, which

are the RMSEs in temporal anomalies and seasonal

climatology, respectively.

A series of experiments are carried out in FOAM

to systematically evaluate our SCDA method LACC

against the corresponding WCDA. All experiments use

16 ensemble members, as in previous studies (Part II; Lu

et al. 2017a,b). The initial ensemble starts from the initial

conditions of the atmosphere for 16 consecutive years.
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The experiments are conducted for 28 years from January

1990 to December 2017, and the most recent 25 years are

used for the final comparison and evaluation. All exper-

iments are evaluated by the ACC and RMSE of the

monthly ensemble mean. The monthly output averages

the model states at all time steps. They provide a good

analysis product because the incremental analysis update

(IAU) scheme has been used to allow small increments to

be added to the model states at every time step. Similar

to Part I and Part II, this study uses the monthly values to

conduct a fair comparison between WCDA, SimCC, and

the LACC method of various averaging intervals. The

frequencies for ADA and ODA are every day and every

month, respectively. The frequency for the cross update

of LACC is every 7 days (hereafter Ave7) unless other-

wise specified. Here ‘‘Ave7’’ indicates that the cross

correlation is calculated between the current state of SST

and the average of 7 daily mean atmosphere temperature

in the bottom four levels from 6 days ago to the current

day; thus, a shorter averaging time for LACC requires

more frequent cross updates than a longer averaging

time. The cross update is applied between 508S and 508N
at all ocean grid points, and the model output between

508S and 508N is used in the evaluation.

Localization is applied for all three assimilation com-

ponents with the widely used scheme of Gaspari and

Cohn (1999). A horizontal influence radius of 1000km is

used in both ADA andODA. Vertically, the atmosphere

observations can affect three levels both above and below

the observed level, and the SST observations are able to

adjust the ocean temperature and salinity down to a depth

of 300m. Considering the relatively low cross correlation

between the atmosphere and the ocean, a smaller hori-

zontal influence radius of 500km is used for the cross

update, and the atmosphere observations are only al-

lowed to directly adjust the SST. Covariance inflation is

not applied in ADA and ODA. However, given the

larger noise from sampling the coupled covariance, a re-

laxation factor of 0.5 is set in the relax-to-prior scheme

(Zhang et al. 2004) for the cross update.

3. Experiments and results

Before beginning the evaluation, we need to first focus

on the specific but important issue with nonidealized

assimilation: there is no truth. In the perfect model

framework, the ‘‘truth’’ can be easily obtained from the

model control run as the precise reference for assessing

theDA performance. In the real world, observations are

the closest samples of the truth that we can obtain. For

simplicity here, gridded reanalysis or analysis data instead

of raw observations are used as references in the evalu-

ation. These widely used data are statistically and/or dy-

namically processed products based on raw observations;

thus, they can also serve as reliable references to the real

world. To provide a reliable performance evaluation of

the SCDA system for the assimilation of reanalysis data,

we evaluate LACC using four comparison schemes:

(i) using the assimilated variables, (ii) using the unas-

similated variables, (iii) ensemble forecast verification,

and (iv) innovation analysis. As WCDA is used as the

benchmark, the performance of theWCDAsystem is first

examined in section 3a, and the LACC performance is

analyzed thereafter.

a. Benchmark WCDA experiment

The performance of the WCDA system is first ex-

amined to provide a reliable benchmark for comparison

with LACC. Both SST and the atmosphere temperature

at the bottom level (Ts) are well constrained by the

WCDA system across the globe. Figure 1 shows theACC

and anomaly RMSE of SST and Ts from the WCDA

experiment, using EN4.2.1 analysis and Reanalysis II as

references. The RMSE patterns of SST and Ts are quite

FIG. 1. ACC and anomaly RMSE of (a),(b) SST and (c),(d) Ts from the WCDA experiment.
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similar to those in the perfect model scenario (Fig. 1 in

Part II) but have larger values, especially in the equatorial

Pacific for both SST and Ts and in the eastern equatorial

Indian Ocean, the northwestern Pacific and the Southern

Ocean to the southwest of Australia for SST. Lower SST

ACCs are found in a few equatorial and midlatitude re-

gions with high natural variability, such as the equatorial

Indian Ocean, the equatorial Pacific Ocean near the

western boundary, the Southern Ocean to the southwest

of Australia, the western North Pacific at approximately

508N, and most areas of the South Atlantic Ocean. The

anomaly RMSE of SST shows a pattern similar to that of

ACC, except for a larger RMSE belt across almost

the entire equatorial Pacific. Over the ocean, ACC and

the anomaly RMSE for Ts are comparable to those of the

underlying SST but with higher ACC and smaller RMSE

than for SST. The comparison between SST and Ts in-

dicates that the atmosphere is better constrained by the

observations than the ocean, likely because of the higher

frequency of DA in the atmosphere (1 day) than in the

ocean (1 month). There is no data assimilation for any

variables in the landmodel, so Ts over the land is affected

by poor boundary conditions from the land and the

anomaly RMSE is relatively large. Meanwhile, small

ACCs of Ts are confined mainly to the low-latitude re-

gions. In comparison with an ensemble of control simu-

lations without data assimilation, the ACCs of both SST

andTs from theWCDAexperiment are greatly improved

with the RMSEs reduced significantly. Between WCDA

and control, the differences of the globally averagedACC

are 0.49 for SST and 0.70 for Ts, and the improvement

percentages of the full-value RMSE are 28% for SST and

21% for Ts.

The ensemble calibration ratio (Bonavita et al. 2012),

which is defined as the ratio between the ensemblemean

analysis error and the ensemble spread, is also examined

for the WCDA experiment. The globally averaged ra-

tios of SST and Ts are both significantly larger than 1,

which is not a desired characteristic for a well-behaved

operational DA system. This feature may be caused by

the existence of significant model bias and the insufficient

covariance inflation used in the experiment. However,

this is unlikely to affect our comparison of the relative

performance of LACC against WCDA, because the set-

tings of the covariance inflation in both ADA and ODA

remain the same among all experiments.

b. Comparison of assimilated variables

Acomparison between theLACCmethod andWCDA

is first conducted for the SST and atmosphere tempera-

ture, which are assimilated variables in the CDA system.

We first evaluate the analysis of the SST field. With the

LACC of 7-day averaging (i.e., Ave7), the improvement

in the ACC of SST is clear, while the improvements in

the RMSEs are less clear. Figure 2 shows the ACC

difference of Ave7-minus-WCDA (hereafter Ave7-

WCDA) and the RMSE ratios of Ave7-to-WCDA

(hereafter Ave7/WCDA) for the anomaly, full-value,

and climatology of SST, using the EN4.2.1 analysis as

the reference. The globally averaged ACC of SST is

improved by 0.036, especially in the regions of low

ACC in theWCDA experiment (Fig. 2a versus Fig. 1a),

such as the tropical Indian Ocean, the western tropical

Pacific, to the south of Australia, and most areas of the

SouthAtlantic. The RMSE ratio for the anomaly shows

an opposite pattern to that of ACC (Fig. 2a versus

Fig. 2b, with a pattern correlation of 20.74), with the

greatest reductions also in the regions of high RMSE

for WCDA, such as the tropical Indian Ocean and the

western tropical Pacific. However, the overall im-

provement is not as clear as in the ACC, with areas of

decreased RMSE (blue regions) almost comparable

FIG. 2. (a) Ave7-WCDAACC difference, and Ave7/WCDA (b) anomaly RMSE ratio, (c) full-value RMSE ratio, and (d) climatology

RMSE ratio of SST. ‘‘Ave7’’ indicates that the cross correlation is calculated between SST and the average of 7 daily mean atmosphere

temperature values in the bottom four levels from 6 days ago to the current day in LACC.
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with areas of increased RMSE (red regions), leading

to a globally averaged RMSE ratio of 1.009. In the

meantime, the pattern of the full-value RMSE is quite

similar to that of the climatology RMSE (Fig. 2c versus

Fig. 2d, with a pattern correlation of 0.95), implying

that the impact of cross update on RMSE is dominated

by its influence on the mean error. Here the climatol-

ogy indicates the seasonal climatology. This large cor-

rection to climatology is partly because the model

usually has a large bias relative to the real world. This

climatology-dominated impact of DA may be specific

to the climate models with large model biases.

We now examine the analysis for the atmosphere us-

ing Reanalysis II as the reference. Given the absence of

land data assimilation in our DA system, to focus on the

addition of cross update in LACC, we consider only the

atmosphere above the ocean. Overall, LACC improves

on WCDA for Ts more than for SST. The ACC of Ts is

improved across the globe (Fig. 3a), with a globally av-

eraged ACC difference of 0.058 and maximum im-

provements in the regions of low ACC in WCDA

(Fig. 1c). In comparison, the ACC of SST is still lower in

LACC than in WCDA in some regions, such as the

midlatitudes of theNorth Pacific, to the west of Australia,

and to the southwest of South America (Fig. 2a).

Similarly, the anomaly RMSE is improved across most

of the globe, with a globally averaged ratio value of 0.928

and maximum improvements in the regions of high

RMSE in WCDA (Fig. 1d). Different from SST which

shows mixed regions of reduced and increased RMSEs,

all three RMSEs are reduced for Ts over almost the

entire globe. The full-value RMSE ratio is also domi-

nated by that in the climatology, implying the tendency

to correct climatology with the model bias. The rela-

tively large reductions in full-value and climatology

RMSEs in the tropics of the three oceans, the northern

subtropical Atlantic, and the narrow belt in the North

Pacific centered at approximately 258N indicate that

the strong ocean–atmosphere coupling in these regions

may further facilitate the advantages of cross update.

Furthermore, the improvements in the ACC and anom-

aly RMSE of air temperature are not limited to the sur-

face field; rather, they extend vertically into the upper

atmosphere, with the maximum improvements located in

the low-latitude regions (with a globally averaged ACC

difference of 0.038 and a RMSE ratio of 0.951, Fig. 4). In

addition, comparison between LACC and SimCC shows

that LACC can improve the ACC and anomaly RMSE

over SimCC in most regions for both SST and Ts (with a

globally averaged ACC difference of 0.018 and a RMSE

ratio of 0.977 for SST and an ACC difference of 0.011

and a RMSE ratio of 0.982 for Ts), especially in the

western and eastern tropical Pacific, the Southern Ocean

to the southwest of Australia, and the midlatitude North

Atlantic (Fig. 5).

c. Comparison of unassimilated variables

In this section, subsurface ocean temperature and

salinity from EN4.2.1 and SODA3.4.2 are used as in-

dependent verifying data to evaluate LACC. Only the

results for EN4.2.1 are shown because the results with

SODA3.4.2 have the same conclusion. Here the unas-

similated variables are the variables whose observations

are not assimilated in the experiments. In the ocean

component of our SCDA system, only SST is directly

cross updated by atmospheric observations. Therefore,

subsurface ocean temperature and salinity are influ-

enced indirectly through the corrected SST during the

forecast phase of a DA cycle. Thus, these variables can

provide a fair comparison between WCDA and SCDA.

LACC improves the subsurface ocean temperature and

salinity in terms of the globally averaged ACC but not

clearly in terms of the anomaly RMSE. Figure 6 shows the

Ave7-WCDA ACC difference and the Ave7/WCDA

FIG. 3. As in Fig. 2, but for Ts over the ocean.
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anomaly RMSE ratio of the 50m ocean temperature and

sea surface salinity (SSS). LACC increases the ACCs of

50m temperature and SSS over most regions, especially

in the Pacific Ocean and the Southern Ocean around

Australia for both fields and in the North Atlantic for SSS.

The improvement in the anomaly RMSE is not as clear as

that in the ACC, with a globally averaged RMSE ratio of

1.0 for both variables. Because of the existence of model

bias, the cross updatemay tend to correct the biasedmodel

climatology most. For a biased model, the error in clima-

tology is usually larger than that in anomaly. We note that

there exist regions where WCDA outperforms LACC,

particularly in some sensitive regions such as theCalifornia

Current, the Kuroshio, and the coastal Pacific upwelling

and stratus-covered region off South America. The im-

provements in the ACCs of subsurface temperature and

salinity are not limited to the near-surface levels; instead,

they extend to the deeper ocean (Fig. 7). For example, the

maximum improvements in the salinityACCare restricted

mostly to the upper ocean, but they penetrate from

the surface downward at approximately 458S and 408N
(Fig. 7b). In addition, there are also regions where the

FIG. 4. Zonally averaged (a) Ave7-WCDAACCdifference and (b) Ave7/WCDAanomaly

RMSE ratio of atmosphere temperature. The right profiles correspond to the global mean

values at different levels, and the short red lines indicate 0.5 standard deviation in the me-

ridional direction.

FIG. 5. Ave7-SimCC ACC difference and Ave7/SimCC anomaly RMSE ratio of (a),(b) SST and (c),(d) Ts.
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ACC is reduced by LACC, such as between 50 and 200m

at approximately 308N and below 50m at approximately

408N for temperature, and below 50m between 158 and
328Nand below 200m poleward of 448N for salinity.When

LACC extracts additional information from the lower

levels of atmosphere temperature observations to correct

SST, the corrected SST further affects subsurface tem-

perature and salinity. This downward and cross-variable

impact may be accomplished via oceanic dynamics during

the forecast phase, which transfers the corrected surface

signal downward. LACCnot only improves the ocean state

over WCDA but also can lead to higher ACCs for ocean

temperature and salinity than SimCCover significant areas

(Fig. 8).Maximum improvements are locatedmostly in the

midlatitudes of both hemispheres and are consistent with

the regions where the maximum ocean–atmosphere cor-

relations occur when the atmosphere leads the ocean. The

higher global ACC averages of Ave7 than SimCC fail to

hold for salinity below200m,which is causedmainly by the

poorer performance of LACC at approximately 408S,

FIG. 6. Ave7-WCDA ACC difference and Ave7/WCDA anomaly RMSE ratio of (a),(b) 50-m ocean temperature and (c),(d) SSS.

FIG. 7. Zonally averaged Ave7-WCDA ACC difference of ocean (a) temperature and

(b) salinity. The right profiles correspond to the global mean values at different levels, and the

short red lines indicate 0.5 standard deviation in the meridional direction.
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details of which may need to be further explored in the

future.

d. Ensemble forecast verification

Forecast is another effective approach for verifying aDA

systemwithout the truth (Laloyaux et al. 2016). Indeed, one

ultimate purpose of CDA is to improve the model forecast

by providing better initial conditions.We perform 6-month

ensemble forecasts initialized from the ensemble analyses

of WCDA and LACC every month within 10 consecutive

years. The forecast statistics are then evaluated against the

unassimilated (future) reanalysis data (i.e., Reanalysis II

for the atmosphere and EN4.2.1 for the ocean).

Our experiments show that LACC provides better ini-

tial conditions than WCDA and subsequently improves

the forecasts. Figure 9 shows the globally averaged ACC

and anomalyRMSE for the ensemble forecasts of SST and

Ts over the ocean up to 6 months of forecast lead time.

First, the ensemble mean forecasts start from better initial

conditions in LACC than in WCDA, with a higher ACC

and lower RMSE at the forecast horizon. Second, the

improved initial conditions lead to improved forecasts

of both SST and Ts for the first several months. After 3

(4) months, however, the improvements of LACC over

WCDA diminish for SST (Ts) in terms of RMSE. In ad-

dition, improvements in the ACC of SST are almost im-

perceptible after 3 months. Although the confidence

intervals show that the differences between Ave7 and

WCDA are not statistically significant at the 95% level,

the ensemble means exhibit consistent improvements for

the initialization and short-term forecasts. In addition, the

ACCs of WCDA are already high, and our model has a

poor forecast ability compared with more advanced op-

erational models, which may make the improvements in

LACC even harder to achieve. In all forecasts, the en-

semble mean ACCs and anomaly RMSEs are better than

those of themeans of all 16members, confirming themerit

of averaging various forecasts as is possible with ensemble

forecasting. The improvements in the Ts forecasts indicate

the impacts of corrected SST on the atmosphere through

dynamic coupling. The improvements are also made in

LACC overWCDA for the subsurface ocean temperature

and salinity, which can last with longer lead times for the

ensemble mean forecasts than the surface. Therefore, an

improved analysis of SST by cross update can also benefit

the subsurface ocean states through oceanic dynamics.

Zonally averagedACCs and the anomalyRMSEs for both

SST and Ts show that the prominent improvements in

ACC are located mostly in the tropics, while improve-

ments are more spatially distributed for RMSE with

maximum reductions located mainly in the deep tropics

and the midlatitudes of the Southern Hemisphere.

e. Innovation analysis

The advantage of LACC is also supported by the

improvement in atmospheric prior innovation. Prior

FIG. 8. As in Fig. 7, but for Ave7-SimCC.
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innovation is typically defined as observation minus

prior background forecast at the analysis step. Given the

atmosphere–ocean cross update in LACC, the innova-

tion for cross update is in the atmosphere. Additionally,

atmospheric innovation can reflect the subsequent im-

pact of the cross update on the overlying atmosphere.

The RMS ratio of Ts innovation shows an improvement

pattern for LACC overWCDA similar to that in Fig. 3c,

indicating that a smaller difference between the obser-

vation and the model background can be obtained by

LACC. The LACC method reduces the globally aver-

aged RMS of Ts innovation by 9.7% compared to

WCDA, especially in the equatorial regions of the three

oceans, in the northern subtropical Atlantic, and in the

Southern Ocean (Fig. 10). There also exist regions

where the RMS of the atmospheric innovation is in-

creased by LACC, such as the narrow belts of the North

Pacific at approximately 108 and 308N and the southern

subtropical Atlantic. We note that the innovation cal-

culated here is not exactly the same as that defined

above. Our model outputs the analyses, instead of the

forecasts, at the analysis steps. Therefore, the atmo-

spheric innovation used here is calculated from the time-

averaged observations and daily mean forecasts between

every two cross update steps. This result should be

quantitatively close to the theoretical innovation because

only the days on which the cross update is conducted are

excluded from the calculation. In addition, the RMS ratio

of the SST innovation, which has a globally averaged

value of 0.984, is also calculated (not shown). It shows a

quite similar pattern to the full-value RMSE ratio of SST

in Fig. 2c, which agrees with the climatology-dominated

feature mentioned above.

f. Sensitivity experiments

The averaging length is a centrally important param-

eter to the performance of the LACC method. To

provide a thorough evaluation of our SCDA method

LACC, sensitivity experiments for different averaging

lengths are also performed. Figure 11 shows the zonally

averaged SCDA-WCDA ACC differences in SST, Ts,

vertically averaged ocean temperature and salinity for

different averaging lengths in LACC. ‘‘AveX’’ means

that the ocean–atmosphere cross correlations are cal-

culated between SST and the average of X daily mean

atmosphere temperature from X 2 1 days ago to the

current day. For the Ave1 and SimCC experiments in

this study, the same atmosphere temperature observa-

tions of the current day are used. The prior ensemble of

the current time step is used in SimCC, while that of the

current daily mean is used in Ave1.

LACC can improve the ACC of SST over the bench-

mark WCDA and even SimCC across almost the entire

domain when an appropriate averaging length (e.g.,

larger than 3) is selected (Fig. 11a). The positive impact

of LACC shows a consistent meridional distribution as

in the perfect model framework, where maximum im-

provements in LACC are located in the low-latitude

regions (Fig. 11a versus Fig. 5 in Part II). The SimCC

method performs better than WCDA mostly in the

FIG. 9. Globally averagedACC and anomaly RMSE of (a),(b) SST and (c),(d)Ts for the ensemble mean forecast

(bold lines) and 95% confidence intervals obtained from bootstrap estimates (vertical lines). Blue lines indicate the

ensemble mean of WCDA, and red lines indicate Ave7.
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low-latitude regions, where the simultaneous cross cor-

relations are large, but poorly in themidlatitude regions,

where the maximum cross correlations occur when the

atmosphere leads the ocean. LACC benefits from this

asymmetric feature of cross correlation and provides

better performance than SimCC in the midlatitudes.

When a small averaging length is chosen (e.g., 1), LACC

still performs poorly in the midlatitudes, and its merid-

ional distribution is quite similar to that of SimCC. As

the averaging length increases, LACC starts to exhibit a

consistent improvement over other DA configurations.

The improvements in Ts with LACC versus WCDA are

significant and robust across all latitudes for all the Xs

adopted here (Fig. 11b). Compared with Ts, SST is more

sensitive to the choice of X, implying that the cross

update of SST is more sensitively affected by the lead

time of the atmosphere.

Subsurface ocean temperature and salinity are also

compared with EN4.2.1 for different averaging lengths.

LACC shows consistent improvements for the globally

averaged ACC over WCDA and SimCC at the subsur-

face but has a more complicated meridional distribution

(Figs. 11c,d). The complex patterns of the improvements

in subsurface ocean temperature and salinity may be

caused by the indirect influence of the adjusted SST and

the complexity of oceanic dynamics. Here, we note that

the ACCs of the vertically averaged ocean temperature

and salinity are relatively small. This may be caused by

the relatively poor simulation performance of FOAM in

comparison with more advanced CGCMs. In addition,

FIG. 10. Ave7/WCDA RMS ratio of Ts innovation.

FIG. 11. Zonally averaged SCDA-WCDA ACC difference of (a) SST, (b) Ts, (c) vertically averaged subsurface

ocean temperature from the second model level to 350m, and (d) vertically averaged ocean salinity from the

surface to 350m. ‘‘AveX’’ indicates that the cross correlation is calculated between SST and the average ofX daily

mean atmosphere temperature values in the bottom four levels from X 2 1 days ago to the current day in LACC.

The corresponding global mean values are illustrated as horizontal dashed lines with the same colors.

JUNE 2020 SUN ET AL . 2361

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/21/21 02:34 PM UTC



no subsurface observation is assimilated in the experi-

ments, which also weakens the correction to the sub-

surface. Overall, the improvements of LACC compared

with WCDA and SimCC are still robust in terms of the

globally averaged ACC (the horizontal dashed lines).

Experiments using different values of atmospheric and

oceanic observation errors are also conducted, with

consistent results here, ensuring that our conclusions

are not sensitive to the choice of observation errors

(not shown).

g. Correction of climatology

The SCDA system using LACC can correct the biased

model climatology as well. In the real world scenario,

model climatology often drifts away from the observed

climatology to converge toward its own climatology.

Figure 12 shows the improvement percentage in the

Ave7 climatology RMSE of 50m ocean temperature

and SSS with respect to the WCDA experiment. LACC

can correct the climatology RMSE ofWCDA over most

regions, especially in the Pacific and Atlantic Oceans.

Compared with WCDA, the globally averaged clima-

tology RMSEs of the 50m temperature and SSS are

reduced by 7.4% and 1.8%, respectively. Analyses of

ocean temperature, salinity, and air temperature at

different model levels also confirm the robustness of the

correction effect to the biased model climatology. As

illustrations of the correction to the biased climatology

by LACC, Fig. 13 shows the seasonal cycle climatology

of 50m ocean temperature at four model grid points.

The first two points show clearly positive corrections to

the biased climatology, while the third and fourth points

show neutrally positive and negative corrections, re-

spectively. Overall, LACC can reduce the error of

WCDA climatology in most regions, leading to a re-

duced globally averaged climatology RMSE.

4. Summary and discussion

Our study confirms the effectiveness of the SCDA

scheme LACC in the assimilation of real world re-

analysis data. To the best of our knowledge, this is the

first successful application of a SCDA system with a

CGCM for the assimilation of reanalysis data. Both

ACC and RMSE are used to evaluate the DA results.

The LACC scheme is evaluated in four comparison

schemes: using the assimilated variables, using the un-

assimilated variables, ensemble forecast verification,

and prior innovation analysis. LACC is shown to sig-

nificantly improve the ACCs of model variables in both

FIG. 12. Improvement percentage in Ave7 climatology RMSE of (a) 50-m ocean temperature and (b) SSS. The improvement is calculated

with respect to WCDA.
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the ocean and atmosphere in comparison with WCDA

as well as SimCC. The biased model climatology is also

improved over WCDA. In the meantime, there are also

regions where the analysis is deteriorated by the cross

update of LACC, such as in the western and eastern

equatorial Pacific, the subtropical Pacific centered at

approximately 308N, and the tropical to subtropical

Atlantic of the SST climatology, and in broader regions

with a rather uniform distribution of the SST anomaly.

These negative impacts may be caused by an inappro-

priate averaging length of LACC for such regions. A

better analysis may be expected if an adaptive aver-

aging length can be adopted for different regions.

Overall, our evaluation in this study demonstrates

the potential effectiveness of our SCDA system using

the LACC approach in the presence of significant

model bias.

Many questions remain to be further studied. For

convenience, this study uses gridded reanalysis data as

the assimilated observations. Liu et al. (2016) pointed

out that the substitution of reanalysis data for raw ob-

servations could affect the analysis quality. Further

studies are needed to test LACCusing raw observations.

In addition, our SCDA system using LACC allows only

one-way cross update from the atmosphere to the ocean.

It would be useful to further explore SCDA schemes in

which ocean observations are used to update the atmo-

sphere. Finally, our model involves substantial model

bias and has a relatively low resolution. It would be

highly desirable to repeat this study in more advanced

coupled climate models.
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